Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728432

RESUMO

Tumor-targeted, activatable photoimmunotherapy (taPIT) has been shown to selectively destroy tumor in a metastatic mouse model. However, the photoimmunoconjugate (PIC) used for taPIT includes a small fraction of non-covalently associated (free) benzoporphyrin derivative (BPD), which leads to non-specific killing in vitro. Here, we report a new treatment protocol for patient-derived primary tumor cell cultures ultrasensitive to BPD photodynamic therapy (BPD-PDT). Based on free BPD efflux dynamics, the updated in vitro taPIT protocol precludes non-specific BPD-PDT by silencing the effect of free BPD. Following incubation with PIC, incubating cells with PIC-free medium allows time for expulsion of free BPD whereas BPD covalently bound to PIC fragments is retained. Administration of the light dose after the intracellular free BPD drops below the threshold for inducing cell death helps to mitigate non-specific damage. In this study, we tested two primary ovarian tumor cell lines that are intrinsically chemoresistant, yet ultrasensitive to BPD-PDT such that small amounts of free BPD (a few percent of the total BPD dose) lead to potent induction of cell death upon irradiation. The modifications in the protocol suggested here improve in vitro taPIT experiments that lack in vivo mechanisms of free BPD clearance (i.e., lymph and blood flow).

2.
Cancer Lett ; 572: 216363, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37619813

RESUMO

Oncolytic viruses (OVs) have emerged as a clinical therapeutic modality potentially effective for cancers that evade conventional therapies, including central nervous system malignancies. Rationally designed combinatorial strategies can augment the efficacy of OVs by boosting tumor-selective cytotoxicity and modulating the tumor microenvironment (TME). Photodynamic therapy (PDT) of cancer not only mediates direct neoplastic cell death but also primes the TME to sensitize the tumor to secondary therapies, allowing for the combination of two potentially synergistic therapies with broader targets. Here, we created G47Δ-KR, clinical oncolytic herpes simplex virus G47Δ that expresses photosensitizer protein KillerRed (KR). Optical properties and cytotoxic effects of G47Δ-KR infection followed by amber LED illumination (peak wavelength: 585-595 nm) were examined in human glioblastoma (GBM) and malignant meningioma (MM) models in vitro. G47Δ-KR infection of tumor cells mediated KR expression that was activated by LED and produced reactive oxygen species, leading to cell death that was more robust than G47Δ-KR without light. In vivo, we tested photodynamic-oncolytic virus (PD-OV) therapy employing intratumoral injection of G47Δ-KR followed by laser light tumor irradiation (wavelength: 585 nm) in GBM and MM xenografts. PD-OV therapy was feasible in these models and resulted in potent anti-tumor effects that were superior to G47Δ-KR alone (without laser light) or laser light alone. RNA sequencing analysis of post-treatment tumor samples revealed PD-OV therapy-induced increases in TME infiltration of variable immune cell types. This study thus demonstrated the proof-of-concept that G47Δ-KR enables PD-OV therapy for neuro-oncological malignancies and warrants further research to advance potential clinical translation.


Assuntos
Neoplasias do Sistema Nervoso Central , Glioblastoma , Neoplasias Meníngeas , Meningioma , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Vírus Oncolíticos/genética , Microambiente Tumoral
3.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768560

RESUMO

Photoacoustic imaging using external contrast agents is emerging as a powerful modality for real-time molecular imaging of deep-seated tumors. There are several chromophores, such as indocyanine green and IRDye800, that can potentially be used for photoacoustic imaging; however, their use is limited due to several drawbacks, particularly photostability. There is, therefore, an urgent need to design agents to enhance contrast in photoacoustic imaging. Naphthalocyanine dyes have been demonstrated for their use as photoacoustic contrast agents; however, their low solubility in aqueous solvents and high aggregation propensity limit their application. In this study, we report the synthesis and characterization of silicon-centered naphthalocyanine dyes with high aqueous solubility and near infra-red (NIR) absorption in the range of 850-920 nm which make them ideal candidates for photoacoustic imaging. A series of Silicon-centered naphthalocyanine dyes were developed with varying axial and peripheral substitutions, all in an attempt to enhance their aqueous solubility and improve photophysical properties. We demonstrate that axial incorporation of charged ammonium mesylate group enhances water solubility. Moreover, the incorporation of peripheral 2-methoxyethoxy groups at the α-position modulates the electronic properties by altering the π-electron delocalization and enhancing photoacoustic signal amplitude. In addition, all the dyes were synthesized to incorporate an N-hydroxysuccinimidyl group to enable further bioconjugation. In summary, we report the synthesis of water-soluble silicon-centered naphthalocyanine dyes with a high photoacoustic signal amplitude that can potentially be used as contrast agents for molecular photoacoustic imaging.


Assuntos
Corantes , Técnicas Fotoacústicas , Meios de Contraste , Solubilidade , Silício , Imagem Molecular , Água , Técnicas Fotoacústicas/métodos , Corantes Fluorescentes
4.
Cancers (Basel) ; 11(12)2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783651

RESUMO

Ovarian cancer (OvCa) is the leading cause of gynecological cancer-related deaths in the United States, with five-year survival rates of 15-20% for stage III cancers and 5% for stage IV cancers. The standard of care for advanced OvCa involves surgical debulking of disseminated disease in the peritoneum followed by chemotherapy. Despite advances in treatment efficacy, the prognosis for advanced stage OvCa patients remains poor and the emergence of chemoresistant disease localized to the peritoneum is the primary cause of death. Therefore, a complementary modality that is agnostic to typical chemo- and radio-resistance mechanisms is urgently needed. Photodynamic therapy (PDT), a photochemistry-based process, is an ideal complement to standard treatments for residual disease. The confinement of the disease in the peritoneal cavity makes it amenable for regionally localized treatment with PDT. PDT involves photochemical generation of cytotoxic reactive molecular species (RMS) by non-toxic photosensitizers (PSs) following exposure to non-harmful visible light, leading to localized cell death. However, due to the complex topology of sensitive organs in the peritoneum, diffuse intra-abdominal PDT induces dose-limiting toxicities due to non-selective accumulation of PSs in both healthy and diseased tissue. In an effort to achieve selective damage to tumorous nodules, targeted PS formulations have shown promise to make PDT a feasible treatment modality in this setting. This targeted strategy involves chemical conjugation of PSs to antibodies, referred to as photoimmunoconjugates (PICs), to target OvCa specific molecular markers leading to enhanced therapeutic outcomes while reducing off-target toxicity. In light of promising results of pilot clinical studies and recent preclinical advances, this review provides the rationale and methodologies for PIC-based PDT, or photo-immunotherapy (PIT), in the context of OvCa management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...